Közép-Európában egyedülálló kvantumprocesszor az ELTE-n
Bár a kvantumos jelenségeken alapuló számítások konkrét alkalmazásokban megmutatkozó előnyei még korlátozottak és nem beszélhetünk ezen a területen igazi versenyről, abban konszenzus van, hogy a kvantumszámítógépek a jövőben jelentős, alapvető hatást gyakorolnak az informatikai trendekre és hamarosan eljöhet az idő, amikor részben át is írják annak szabályait.
A magyarországi kvantuminformatikai kutatásokat a Kvantuminformatikai Nemzeti Laboratórium intézményeken és diszciplínákon átívelő tevékenysége fogja össze jelenleg a legszélesebb körben. Az ELTE Informatikai Karán és Természettudományi Karán a következő területeken végeznek kutatásokat: kvantumszámítógépek programozását megkönnyítő programozási nyelvek és szoftverfejlesztési eszközök (fordítóprogramok, elemző, profilozó és refaktoráló eszközök), klasszikus és kvantumos programelemek egyesítése, kódoptimalizálási módszerek, kvantumalgoritmusok, kvantumszámítógép-szimulátorok, posztkvantum kriptográfia, valamint optikai és kvantumoptikai alapjelenségek kísérleti úton való tanulmányozása. (Az ELTE TTK-n folyó kvantuminformatikai kutatásokról Rakyta Péter PhD-hallgató előadását itt nézheti meg.)
https://www.youtube.com/watch?v=B-AS7_oAvh0
A Kvantuminformatikai Nemzeti Laboratóriumot bemutató videó
Az ELTE a Laboratóriumban folyó kutatómunka infrastrukturális háttereként 2021 végén szerzett be egy Közép-Európában egyedülálló, a világ élvonalát képviselő fotonikus processzort. A fotonikus processzorok kulcsfontosságúak mind a kvantumos, mind a fényt használó információfeldolgozási feladatokban. Mivel a lineáris optikai kvantuminformáció-feldolgozáshoz nagyméretű és alacsony veszteségű programozható fotonikus processzorokra van szükség, a Laboratórium támogatásával az ELTE választása egy egyetemi startup, a University of Twente campusán működő QuiX Quantum univerzális kvantumfotonikus processzorára esett.
Vattay Gábor, a Természettudományi Karon működő tudományos műhely vezetője elmondta, ez egy kis veszteségű, 8 üzemmódú, hangolható lineáris interferométer. A nyalábokra osztott lézersugár interferenciáját mérő műszer a hullámvezetők elrendezése miatt tetszőleges lineáris optikai transzformációt, azaz számítási műveletet tesz lehetővé. A műveleteket a processzorhoz csatlakoztatott hagyományos számítógépen futó program vezérli.
Az eszköz programozása egy unitér mátrix segítségével történik. A jelenleg 8*8-as mátrix alatt a processzor meghatározott megbízhatósággal hajtja végre a programot. A program megbízhatósága mérhető, és az előforduló hibák mintázatai akár gépi tanulási algoritmusok segítségével detektálhatóak. E tudás birtokában az ELTE-n különféle hibajavítási technikákat dolgoznak ki, és a kutató akár egy egyszerű önellenőrzéssel átalakíthatja a mátrixát úgy, hogy a mérési eredmény az elvárthoz a lehető legközelebb legyen.
Az új típusú számítógép-architektúrák nem jelentenek gyakorlati megoldást minden számítási problémára, de rendkívül jól használhatók olyan problémák esetén, amelyekhez nagyszámú lehetséges kombináció kiszámítása szükséges. Nagy hatékonyság várható például a gépi tanulás, a kombinatorikus optimalizálás, az adatbázis-keresés, a portfólió-optimalizálás területén. A kiberbiztonság szempontjából fontos alkalmazási lehetőség a véletlenszám-generálás, valamint a nagy számok faktorizációja.
A kvantumos és fotonikus eszközök jelenleg drágák, rossz a hibatűrésük, (bizonyos fajtáik) nagyok, és speciális környezetet igényelnek, ezért a fejlesztési folyamat sikerének zálogai a felhasználóbarát architektúrák és a felhőben való használhatóság, az infrastruktúra megosztása, a hozzáférés biztosítása és a szimuláció.
Az Informatikai Karon Kozsik Tamás és kutatócsoportja által fejlesztett, szabadon hozzáférhető Piquasso szimulátor hatékonyságát tekintve a világ legjobbjai közé tartozik. Az alkalmazás bizonyos számításokban akár négyszer gyorsabb, mint a jelenleg piacvezető TheWalrus (Xanadu) szimulátor, sőt a kutatók FPGA-alapú számításgyorsítójával ez az előny 13-szorosra is növelhető. A kvantumszimulátorok a kvantumalgoritmusok futtatására alkalmasak kvantumszámítógép nélkül, így megkönnyítik az algoritmusok tesztelését és a hibakeresést. Jelenleg a szimulátorok kapacitása még jelentősen meghaladja a fizikailag megvalósított kvantumszámítógépekét, de ez a trend hamarosan megfordul.
https://www.youtube.com/watch?v=ErGeuc95z3M
A kvantumprocesszor kicsomagolása a Természettudományi Kar videóján
A következő évek nagy kihívása, hogy K+F+I eredményeik mennyire teszik a magyar kutatócsoportokat versenyképessé az európai zászlóshajó programban, kellően sikeresek leszünk-e a nagy horderejű interdiszciplináris tudományos és technológiai kihívásokat célzó kutatási tevékenységek koncentrációjában, az eredmények technológiai, üzleti becsatornázásában. Az ELTE-n üzemelő kvantumhardver a közeli jövő egyik nagy ígérete ebben az irányban.
A Laboratórium kutatási eredményei bekerülnek az ELTE oktatási programjaiba. Idén augusztusban pedig várja az érdeklődő hallgatókat és fiatal kutatókat a Posztkvantum Kriptográfia Nyári Egyetem az Informatikai Karon, ahol akadémiai és ipari területről érkező vezető nemzetközi kutatók tartanak majd előadásokat.